Molecular actions of the vitamin D receptor in mammary and skin carcinogenesis

نویسنده

  • Samantha L. Chu
چکیده

Vitamin D has been linked to breast cancer risk in animal and human studies, suggesting that the active metabolite 1,25-Dihydroxyvitamin D (1,25D) might protect breast cells from transformation. In human mammary epithelial (HME-hTERT) cells, which express vitamin D receptor (VDR), 1,25D exerts anti proliferative and pro-differentiating effects, but the molecular mechanisms that mediate these actions are unknown. In previous studies we used genomic profiling to classify 1,25D regulated networks in HME-hTERT cells that may contribute to the anti-cancer effects of vitamin D. Through this approach we detected a 60-fold increase in the cytokine CD14 in HME-hTERT cells treated with vitamin D. CD14 is a component of the innate immune system which also functions in apoptotic cell clearance and mammary gland remodeling. The studies described in the first part of this thesis were designed to confirm and extend this preliminary data. HME-hTERT cells, which were used to generate the preliminary data, and HME-PR cells, a transformed derivative, and HC11 cells, mouse mammary epithelial cells, were cultured and treated with vitamin D metabolites (25-hydroxyvitamin D and 1,25dihydroxyvitamin D). Doses ranged from 0-100nM, and duration of treatment was 24h. qPCR was used to analyze the expression of CD14 and related immune response genes. These studies determined the extent to which 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D alter the synthesis or secretion of cytokines in mammary cells (both human and mouse) and how transformation alters the basal and vitamin D-induced expression of these cytokines. Our data suggest that vitamin D regulation of cytokines is altered during the process of carcinogenesis and that the specific targets of VDR that regulate immune responses differ in human and mouse cells. In addition to effects on immune responses, the anti-cancer effects of vitamin D have been linked to modulation of the extraceullular matrix. In previous studies, the Welsh lab identified Has2 (hyaluronic acid synthase 2) as a vitamin D regulated gene in invasive murine mammary cancer cells. Has2 is the rate-limiting enzyme in the synthesis of hyaluronic acid (HA), which accumulates in the extracellular matrix. Has2 over-expression and HA synthesis have been linked to cancer cell invasion and metastasis in vitro and abnormal skin phenotypes in vivo. The abnormal skin phenotype associated with Has2 over-expression is highly similar to skin changes reported in VDR knockout (VDRKO) mice, suggesting that Has2 regulation by VDR may have functional consequences in vivo. In the second part of this thesis project, we further investigated the link between VDR and Has2 expression/function in skin and mammary tissue of mice. Tissues from wildtype and VDRKO mice of different ages were sectioned and processed for Has2 (immunofluorescence), HA (HABP binding assay) and proteoglycans (alcian blue staining). Additional in vitro studies were conducted to establish western blotting and PCR assays for study of this pathway. Our data suggest that vitamin D and the VDR physiologically regulate Has2 and HA production in vivo, especially in the epidermis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Is there any association between a vitamin D receptor gene polymorphism (FokI) and pemphigus vulgaris?

Background: Pemphigus vulgaris (PV) is an autoimmune bullous disease of the skin and mucous membranes caused by activation and proliferation of T cells, production of Th2 cytokine profile and pathogenic antibodies. Vitamin D is a probable immunodeviator to Th2, which its actions are mediated through the vitamin D receptor (VDR). FokI is the only single nucleot...

متن کامل

Are there Relationships between the VDR-FokI Polymorphism and Vitamin D and the Insulin Resistance in Non-melanoma Skin Cancer (NMSC) Patients? A Protocol for Case-control Studies

Background and Objectives: Evidence indicate relationships between the sunlight exposure, vitamin D status and non-melanoma skin cancer (NMSC) risk. Vitamin D receptor (VDR) polymorphisms have been linked to metabolic changes in insulin resistance and various cancers. The purpose of this study is to investigate relationships between the sunlight exposure and the NMSC risk. Furthermore, relation...

متن کامل

Association of Vitamin D Receptor Polymorphism (VDR rs 2238136) with Colorectal Cancer

Background & Aims: Many studies have demonstrated that Vitamin D has an important role in cell growth and proliferation and vitamin D receptor polymorphism has significant relationship with colorectal cancer (CRC). The aim of this study was to assess the incidence of VDR rs 2238136 polymorphism in Iranian population and to investigate the relationship between this single nucleotide polymorphism...

متن کامل

Polymorphisms within Exon 9, But Not Intron 8, of the Vitamin D Receptor Gene Are Associated with Asthma

Objective(s) Deregulation of the immune system through allied factors and cytokine responses are thought to be important contributors to the pathogenesis of asthma. Vitamin D3 and its nuclear receptor appear to be factors that maybe involved in regulating immune responses during the progression of asthma. The aim of this study was to investigate the association between polymorphisms in intron ...

متن کامل

The impact of vitamin D in breast cancer: genomics, pathways, metabolism

Nuclear receptors exert profound effects on mammary gland physiology and have complex roles in the etiology of breast cancer. In addition to receptors for classic steroid hormones such as estrogen and progesterone, the nuclear vitamin D receptor (VDR) interacts with its ligand 1α,25(OH)2D3 to modulate the normal mammary epithelial cell genome and subsequent phenotype. Observational studies sugg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013